Synthesis for Customized Computing

Jason Cong
Chancellor’s Professor, UCLA
Director, Center for Domain-Specific Computing

cong@cs.ucla.edu
http://cadlab.cs.ucla.edu/~cong

Our Research Focus Since 2008:
Customized Computing for Better Efficiency

sun’s surface

1000

Power doubles every 4 years

nuclear reactor

=)
3
T

Parallelization
K

Penti Customization
Pentium lII®
hot plate Pentium lI®
-

Adapt the architecture to
/ application domain

L L
1.5p 1.0p 0.7p

Wiatts/cm?

3>
AR

0.5p 0.35u 0.25u 0.18u 0.13p 0.10p

0.07u
Based on Fred Pollack (Intel) and Michael Taylor (UCSD)

12111115



Why Customized Computing?

AES 128bit key Throughput Power Figure of Merit

128bit data (Gbls/W)

0.18mm CMOS 3.84 Gbhits/sec 350 mwW 1 (11)

FPGA[1] 1.32 Gbit/sec 490 mW 2.7 (114)

ASM StrongARM [2] 31 Mbit/sec 240 mW 0.13 (1/85)

ASM Pentium Il [3] 648 Mbits/sec 414W 0.015 (1/800)

C Emb. Sparc [4] 133 Kbits/sec 120 mW 0.0011 (1/10,000)

Java [5] Emb. Sparc 450 bits/sec 120 mW 0.0000037 (1/3,000,000)

[1] Amphion CS5230 on Virtex2 + Xilinx Virtex2 Power Estimator

[2] Dag Arne Osvik: 544 cycles AES - ECB on StrongArm SA-1110
[3] Helger Lipmaa Pl assembly handcoded + Intel Pentium IIl (1.13 GHz) Datasheet
[4] gcc, 1 mWIMHz @ 120 Mhz Sparc - assumes 0.25 u CMOS
[5] Java on KVM (Sun J2ME, non-JIT) on 1 mW/MHz @ 120 MHz Sparc - assumes 0.25 u CMOS

Source: P Schaumont and | Verbauwhede, "Domain specific
codesign for embedded security," IEEE Computer 36(4), 2003

How to Improve the Efficiency? Our Proposal - Customized
Computing with Accelerator-Rich Architectures

+ A customizable heterogeneous platform (CHP)
= With a sea of dedicated and composable accelerators

= Most computations are carried on accelerators - not on processors!

< A fundamental departure from von Neumann architecture

¢ Why now?

= Previous architectures are device/transistor limited

= Von Neumann architecture allows maximum device reuse
* One pipeline serves all functions, fully utilized

¢ Future architectures

= Plenty of transistors, but power/energy limited (dark silicon)

= Customization and specialization for maximum energy efficiency

+ A story of specialization

12111115



Lessons from Nature:
Human Brain and Advance of Civilization

+ High power efficiency (20W) of human brain comes from specialization

= Different region responsible for different functions
+ Remarkable advancement of civilization also from specialization
= More advanced societies have higher degree of specialization

Frontal Premotor d
Love Sequential thinking @ Pt L Genitals )
( action ) T Loy Foat’ Parietal
Takes ideas, actons and ok Leg | Soo8

‘words, and i
linear sequence

A
mand 2T [omone |
Hand

! aoay Senses] _ Meth symbols +/-=x
annght side Match body to "let” right" words
| = Rbaningclncks .
ol

Creates'new patterns

Yot ideas and languatie f ]
. yriter, Phiosopher oo sdwa\ arangemert / Recognizing
)mpulswehl(ll\n ! Face )L,ps of langy

1
1
¢ lnmhmons, o™ , &\“”““’ Mﬂ:ngmxe

£ 0 Word sounds Letter'shapes |
. WhatHoT to sAv phonemes \/T' vision ™R P A (from eye)
Sk ' Worrying (talking e .ofgefters with. Lines, &ngles
o yourssit sbug. ¥ sounds of words N ol-f

what ot to do

Occipital
Lobe

( vision )

|anwage

o  Face Names "
Left Brain G
pre
= ® 2001 Stephan Holland Lobe .

www.hiddentalents.orng  ( #emOLY )

UCLA Newsroom

UCLA Newsroom &5 > News Relea

Homa

NSF awards UCLA $10 million to create
: customized computing technology

159 9:45:00 AM

By Wilean Worg Kromibout|

The UCLA Henry Samueli Schoal of Enginesning and Applied Soence has bean awarded a $10 million
grank by the Mabional Soence Foundation's Expeditions in Co g program bo dewalop high-
parformance, enargy afficsent, customizable computing that could revalutisnies the way computers ans
usad in haalth care and other important applications.

I particustar, UCLA Engineering researchers will damaonstrate how tha new technology, known as

Resaarch dhaiTain-4| camputing, coulkd transform the male of medical imaging and hemodynamic simulation,
providing more cost-effective and corvanent salubons for praventres, diagnostic and therapeutic
Heakh Sciences procaduras and dramatically improving health cana quality, efficiency and patiant outcomes,
“This significant award is anather testament to the workd-class faculty hara ab UCLA who oo
push the envelape 1o Solve socisly's most pressing issues,” said UBCLA Chancallor Gers Blod

Student &ffairs

gratetul by the KSF, which has repeatedly provided crucial funding ta our faculty, helping to place the
: university amang the nation’s top fve in research Funding.”

Acadamics & Faoulty

In an effort to mest ever-increasing computing needs in wanous fields, the computing industry has
entered an "era of parallelization,” in which tens of thousands of computer serverd are donnscted in
warehGus cale data centers, sakl Jason Cong, the Chanoallar's Professor of Comouler SOsnios and
director of the new UCLA Center far Domain-Specific Comauting (CDSC), which will averses the
research, Bul thess parallel, general-purpose computing systems still face serious dhallenges in terms

Campus News

Medsa Cor

& [mages :

I Iriges of performance, energy, space and cost.

& Vidso

#@ Blogs Domain-specific camputing holds significant advantages, Cong said. While general-purpose computing

redies an computer architecture and languages aimed at any type of application, domain-specific

eomputing utilipes & customizable archilscture and custom-ofiented, high-lewsl computer langubges
For the Media tailored to a particular application area or domain = in this case, medical imaging and hemodynamic
Corntacs modeling. This customization ultimately results in much bess energy consumption, faster results, lower
costs and increased productivity.

Potrws releases
Avisceies The goal of the rew UCLA carter, Cang said, is to look beyond parallalization and focus on domain-
spaxific customization to bring significant power-performance effidency improvemnent to impartant

About WCLA application domains.

12111115



Levels of Customization

+ Single-chip level

= Require new processor designs, e.g. using composable
accelerators [ISLPED’ 12, DAC’14]

o Server node level
= Host CPU + FPGA via PCl-e or QPI connections

¢ Data center level

= Clusters of heterogeneous computing nodes

Levels of Customization

+ Single-chip level
= Require new processor designs, e.g. using composable
accelerators [ISLPED’ 12, DAC’14]
+ Server node level
= Host CPU + FPGA via PCl-e or QPI connections

¢ Data center level

= Clusters of heterogeneous computing nodes

12111115



Example of CDSC Heterogeneous Computing Server

“Commodity” Intel Server Convey FPGA-based coprocessor
b Ny
: Application Application Engines Direct
i! | Engine Hub (AEs) g::ta
Processor Intel® i ARS = || & & €

Memory| XC6vix760 FPGAs
Controll 80GBY/s off-chip bandwidth J

Xeon Quad Core LV5408

ub. (M 94W Design Power ]
40W TDP
neo 1o j Tee ., Oee
WIETHOIY 7 AVICHIOIYA,

Subsystem J y ¥V ¥ ur) &N &

Standard Intel® x86-64 Convey coprocessor

Server FPGA-based

x86-64 Linux Shared cache-coherent memory

A Success Application: Low-Dose Adaptive CT Scan

Y " 2. Image
=— ' ) Reconstruction
L= - B 7
1. Initial Scan
(low-dose CT scan) H 3. Automated

toy Detection

If no nodules are seen on
the low-dose CT study,
the patient can go home
—— without any further
Kl | imaging required.

5. Clinical 4. Adaptive Diagnostic Scan
Interpretation

If nodules are detected, a diagnostic
follow-up scan is performed during the

same visit. < UCLAJSI =)
] ealth 2,
SCesesm RapioLocy G5z

12111115



5 Years of Accelerating Medical Image Processing

2010 2013 2015 (Today)
CT image 18 hours 20 minutes 6 minutes
reconstruction Single thread CPU FPGA acceleration on Convey 4 Viirtex-6 FPGAs on Convey w/data reuse
Denoising 5 minutes 15 seconds 3 seconds

Single thread CPU NVidia GPU Core i7 Haswell, OpenMP, stencils
Registration 10 minutes 2 minutes 30 seconds

Single thread CPU NVidia GPU Core i7 Haswell, OpenMP, stencils
Segmentation 20 minutes 4 minutes 1 minute

Single thread CPU Multithread CPU Core i7 Haswell, OpenMP, stencils
Analysis 45 minutes 18 minutes 5 minutes*

Single thread CPU Multithread CPU Core i7 Haswell, OpenMP

* New detection method wiimproved
accuracy

L. =1

Workstation CPU + GPU FPGA, CPU platform

Levels of Customization

m Single-chip level

= Require new processor designs, e.g. using composable
accelerators [ISLPED’ 12, DAC’14]

m Server node level
= Host CPU + FPGA via PCl-e or QPI connections

m Data center level

= Clusters of heterogeneous computing nodes

= How about programming at data center level?

12111115



FPGA “FARM” at UCLA - A Small Multi-FPGA
Rack

* Deployed in 2013
e Used for research

and teaching
» (CS133 (60+ students)
« (CS259 (18 students)

~

l Ethernet Switch ‘
| AMtomCPU | | AtomCPU |
$Ethernet ¢Ethernet EEEEEE Ethernet
| ZynqFPGA | | Zynq FPGA |

A. Putnam, “A Reconfigurable Fabric for Accelerating Large-Scale Datacenter Services”, ISCA2014 1

12111115



Accelerating Large-Scale Services — Bing Search

1,632 Servers with FPGAs Running Bing Page Ranking Service
(~30,000 lines of C++)

95% Query Latency vs. Throughput

, SW + EPGA
2x Increase in y

Throughput /4

29% Latency :
Reduction / / < 30% Cost

< 25 W Power
LATENCY(normaIized) O HW Fal|UreS

SW Only ee=SW +FPGA

T
[
N
©
£
£
]
c
0
z
0.
O
w
v
-4
w
o
(%)
=
-4
w
=)
()

A. Putnam, “A Reconfigurable Fabric for Accelerating Large-Scale Datacenter Services”, ISCA2014 15

CDSC FPGA-Enabled Cluster

= A 24-node cluster with FPGA-based accelerators

= Run on top of Spark and Hadoop (HDFS) s ':"Ipr\‘,ian[;itj l;ggz:

- 2. 16GB on-board RAM

1 master / driver

Each node:

1. Two Xeon processors

2. One FPGA PCle card
(Alpha Data)

3. 64 GBRAM

4. 10GBE NIC

1 10GbE switch

Spark:

» Computation framework

* In-memory MapReduce
system

HDFS:
« Distributed storage
framework

22 workers

1 file server [HEs

12111115



Example Application: Personalized Cancer Treatment

A large genome collection of healthy Customized accelerators Genomic analysis pipeline
population and cancer patients

DNA sequencin g Variant discovery

Automatic Accelerator Extraction
Accelerator Runtime Management

Supercomputer in a rack
Enable effective searches of l}

precision medicine for cancer treatment

Big data, compute-intensive

Gene mutations discovered in codon reading frames

e i

/.

Current Progress on Whole-Genome Sequencing
® GATK data cleanup flow

= Milestone

= Whole-genome alignment in 36 minutes; whole-exome alignment in 7.5 minutes

> 40x speedup !!!
Single-node flow Cluster flow

BWA-MEM: 10+ hours | | CS-BWAMEM (UCLA): 36 mins
¥ ]
SAMtools Sort: 9+ hours ADAM Sort: 12 mins
Picard — Markdup.: 100+ hours Modified Markdup. (UCLA): 10 hours
T (possibly further reduce to 30 mins ~ 2 hours)

Indel Realignment (in progress)

GATK Base Recalibration (in progress)
Data: 300 GB per sample Target: several hours
Flow runtime: 7 days 18

12111115



Hardware Acceleration in CS-BWAMEM
= CS-BWAMEM acceleration

= Accelerate the Smith-Waterman kernel (O(n?) time complexity)
* ~50% of total program runtime
* Batch a group of data and send them FPGA to reduce communication overhead

= Ch External DDR Memory Multi PE arrays:
Maximize the throughput for

¢ Enormowsitaskstedekpa alIeIisT Aligned infinite task-level parallelism
~: 0 Feference sesments . results

o
g . _PEAray1 g Two-level task distribution:
& | £ > rro 3 re, H>{FFo | . § Shorten the critical path
I e g,g ->{TiEoN—{es, H->{io] > E% —>1 i %ﬂ-?g&ﬁ%@cture:
g% = ecent resource utilization
>
i & |57 w2 5 gt
E E speedup over
2 g = || 24=thread Xeon processor
g = PE Arrayn g 2 || Compatible to the state-of-
C] 3 e B mro 3 re, Ho{Fro -], % = || the-art tool BWA-MEM:
| > g | ég —{ rro 3{ re, H>[rro]—> %? —> 2 -+ Can be integrate into real
£ = 2E = DNA sequencing pipeline
2| B om0 |
— — 19

How to Program Such “Beasts”?

-- “Write Once, Compile Anywhere”

20

12111115

10



C/C++ Based Synthesis for Accelerators
xPilot (UCLA) -> AutoPilot (AutoESL) -> Vivado HLS (Xilinx)

Design Specification

L ot l!\yshmcj IUur constnlnh]" +  Platform-based C to RTL
N

synthesis
/ Compilation& | AytoPilot™
200raton

+  Synthesize pure ANSI-C and C+
+, GCC-compatible compilation
[ Code transformation & opt]
|

C.) [Bchavlonl & Communication

youaqjse] uowwion

floating point data types &
operations

sisayjufs 1S3

+ Efficiently handle bit-accurate
fixed-point arithmetic

+ SDC-based scheduling
+  Automatic memory partitioning

+  Full support of IEEE-754
Synthesis and Optimizations

RTL HDLs & |[Timing/Power/Layou
RTL SystemC Constraints

g

QoR matches or exceeds manual
RTL for many designs
or ASIC blocks

Developed by AutoESL, acquired by Xilinx in Jan. 2011

BuidAjojoid pue ‘uonedlLIaA ‘UoReINWIS

|

21

AutoPilot Results: Sphere Decoder (from Xilinx)

+ Wireless MIMO Sphere L x4
H

1
4x4 Matrix Inverse
Matri Norm
Decoder m e
R ubst. Reorder
— ~4000 lines of C code

Ly

— Xilinx Virtex-5 at 225MHz 3x3

3x3 Matrix Inverse ; Norm
+ Compared to optimized IP arp [ Back ity Sesrot
- 11-31% better resource .
- 2x2 Matrix Inverse ; Norm
i |- amo {32 | 8 (e

s |

usage 2x2

|

]

RTL AutoPilot i LSXBRVD Tree Search Sphere Detector Min |||
Expert | Expert ( QRD Search

LUTs 32,708 29,060

Registers 44,885 31,000
TCAD April 2011 (keynote paper)

“High-Level Synthesis for FPGAs: From
Prototyping to Deployment”

DSP48s 225 201

BRAMs 128 99

12111115

11



AutoPilot Results: Optical Flow (from BDTI)
+ Application
= Optical flow, 1280x720 progress scan P
= Design too complex for an RTL team

+ Compared to high-end DSP:
= 30X higher throughput, 40X better cost/fps

Highest Frame | Cost/performance
Rate @ 720p ($/frame/second)

(fps)

Xilinx $27 183 $0.14
Spartan3ADSP
XC3SD3400A
chip

Texas $21 5.1 $4.20
Instruments

TMS320DM6437

DSP processor

BDTi evaluation of AutoPilot

http://www.bdti.com/articles/AutoPilot.pdf 23

Vivado High-Level Synthesis: Accelerated IP
Development and Design Space Exploration

Conventional C-based

> C libraries:

« Arbitrary precision e raton I:M:I
+ Floating-point math.h e "!:E
« OpenCYV video functions vjm e
. DSP -
nput © Simuiaton Time Acceteration
« Linear algebra 10 fames of ideo data 2 dars msm:mr’s mmmmmm : ’
> Accelerated verification Ran coded
— >100X faster than RTL design — =
(weeks)
- . . Latency 37
> Fast compilation and design i)
. Memory 134 (16%)
exploration CEUEEEY
. I Memory 273 (65%)
— Algorithm feasibility (RAMECED)
X A Registers 29686 (9%)
— Architecture lteration
LUTs 28152 (18%)

Customer proven results

Page 24 © Copyright 2013 Xilinx & XILINX » ALL PROGRAMMABLE.

12111115

12



12111115

r-/V/V/V/ I/ =3
Production-Proven and Adopted by 1000+ companies

> “Vivado® HLS enabled easy and fast implementation of 768x768
QRD single precision floating-point design. We like this tool QoR,
productivity and flexibility and will deploy in to more production
designs.”

» “Vivado HLS made it possible for DSP software engineers to
implement LTE layer 1 switch on Zynq® SoCs by enabling us to
target more than 500K lines of C code.”

> “We developed C++ DSP functions using Vivado HLS and the
results met size/speed goal for commercial platform deployment
on Virtex®-7."

© Copyright 2013 Xilinx & XILINX » ALL PROGRAMMABLE.

HLS Alone Is Not Enough for Customized Computing

+ Alarge design space for software and hardware co-design
+ Also need automated source code transformation for HLS
friendly C/C++ code to enable
= Concurrent memaory access
= Data reuse and on-chip buffer generation
= Data prefetching

26

13



Design Complexity: Medical Image Processing Example

Streaming vs. shared ?

FIFO vs. switching buffer?

3-D images

\

Segmentation

L

[ SegMean [€

l SegBodyStage1

Y

Sync. granularity ?

Address mapping ?

Gradient

Data prefetching ?

HW or SW ?
Data reuse ?

Implementation options ?
Buffer size vs. bandwidth ?

Duplication ? .
On-chip memory throughput ?

System performance?

CMOST: Fully Automated Compilation and Mapping Flow
[DAC 2015]

Platform Spec.

Application: C/C++/OpenMP4.0 User Directives

System Optimizah%\
v
Task graph
g

)
|

i q Module evaluation I Data reuse
" Task graph extraction N
i [ Block streaming I Prefetching ] <
2 hardware
S [ HW/SW partitioning ] mode [ Module selectﬁon & duplication ]J
; design parameters
S [ Driver generation ]
S
g [ OpenCL generation ] Module templates, Configure C/RTL/scripts
System IP templates | | | - ) 4
) q (CRTL) ™ Xilinx Vivado HLS A\
[ Test generation ] OpenCL L= i Vivad
K\ ilinx Vivado /
i ¥ v
design analysis/impl. report On-board Retargetable and optimized

executable HW/SW OpenCL source code

12111115

14



Latest Research - Optimizations Beyond HLS

Input Code(C/C++) Polyhedral-Based Data Reuse
| Optimization for Configurable Computing

4 "\ FPGA™3 Best Paper Award
Program Analysis
Loop_ S!ruc.ture Loop Improving Polyhedral Code Generation
Optimization for High-Level Synthesis CODES-ISSS’14

Best Paper Award
Code Generation
Theory and Algorithm for Generalized
Memory Partitioning in High-Level
Data Layout Array Partitioning Synthesis, FPGA'14

Optimization m An optimal microarchitecture for stencil
i

\ / computation acceleration based on non-
4 Module Selection/ 7\ uniform partitioning of data reuse buffers

replication (DAC'14)
'(;“‘t*.’ "‘f'°°t',‘"e Combining Computation with
ptimization Optimization Communication Optimization in System

Module-level Synthesis for Streaming Applications,
\_ Scheduling ) FPGA'14

N

i

J

—/

29

Memory Partitioning for Throughput Optimization

m Memory is still a bottleneck
= Data intensive applications: image/video
= Loop unrolling/tiling/pipelining

= Memory partitioning

g

. ® @
Cyclic LB cLe
Partition | | | 1
1 I 1 1 1 1
1 ! 1 1 ! 1
L} @ L} L} @ L]

2 2

3 P
D

Bank 1 Bank 2 Bank N

. Sl Nk
Size = K, Bandwidth = p Size ~ K, Bandwidth= N*p

N: Partition Factor
p: memory port number

Challenge: generate conflict-free memory partitioning for a given program ‘

30

12111115

15



Memory Partitioning for HLS*

, s 1
m Cyclic partitioning 22
3
= Easy to implement :4
= Very effective in practice =
m Example a
= Williand (3*i+1) go to the same memory A . B
bank? at a2
a3 a4
m Theorem 22 28
Vi, a;*i+b,#a,*i+b, mod N — ==
A1 A 2

< gcd(a;-a,, N) t (by-by)

Cyclic partitioning

*J. Cong, W. Jiang, B. Liu and Y. Zou. ACM TODAES 2011 (Best Paper Award) ‘

31

Memory Partitioning for Multidimensional Arrays

m Flatten-Based Partitioning
= Flatten multidimensional array
= Partition flattened single dimensional array
for (j=0; j<w1; j++)
for (i=0; i<wO0; i++)
foo(A[j][i], A[I[i-1], Af-1][i I, AG+1][i], AG][i+1]);
¥
foo(A[wO *j+i], A[wO *j+i-1], A[wO *j+i- w0], A[wO *j+i+ wO0], A[wO0 *j+i +1]);

Conflict free conditions:
Bank number Bank number distribution
10 N + 2 N * w0

e ~"NC " N}{wm0-1) Nt (WO+1)

6
4
z Partition results are related to array sizes!

% 17 18 19 20 21 2 23 24 2 w0

32

12111115

16



Linear-Transformation-Based Partitioning*

m Linear transformation-based approach
= Multidimensional address X linearization: L(X)=a - ¥

= Bank mapping: bank(x)= L(x) mod N (Cyclic)

m Example: denoise

Bank2
x1 PR x1 ’/'
-
e _-~ _- Bank3
- P /’ /’

D . ’/O -’ ’/G _- _-" Bank4
2 /” /” -7 -7 /” /” - Bank0
-~ - -~ - _~ P an

. /. ’/‘ e ,. ’/G
-~ - . - - e Bank1
- ’/ ’, - ’/ ’/
ol ‘adife 0 @l " e , X
e color:banks

Vi, Ala,*i+b]lc

< ged((ogg (@-ay)+ax;, (€-C), N) 1 (&, (by-b,)+x, (d,-d>))

1*j+d;1 not conflict with Ala,*i+b,][c,*j+d,]

| *Y.Wang, P. L, P. Zhang, C. Zhang and J. Cong. DAC 2013 |

33

Access Conflict

for (i = 1; i <= n; i++)
for(j = 1; j <= min(n,n-i+2); j++)
foo(A[j+1] [i+1], A[Jj][2*i]);

ntM| O O [0 o o 0O O O

nf o O O @ o B o o o o

O 0O O O O [[0[0 o o o o

2[ o o o o 2] o[ [@O o0 o o o

11 o o o o 1 o0 o0 o o oo
T 2 n i T 2 2n X0

Iterator domain

Array accesses
bank(x0, x1)= (x0+x1)%3

34

12111115

17



Conflict Polytope

= of two references is a subset of iteration domain where the two

references are mapped on the same bank

1<i<n

1<j<n
i+j<n+2

for (i = 1; i <= n; i++)
for(j = 1; j <= min(n,n-i+2); j++)

foo (A[j+1] [i+1], A[j][2*i]);

(i+D+(j+1) =i+ j)mod3
= Insert an extra variable k to linearize

G+D+(+D)=Qi+ j)+3k

m Fourier-Motzkin Algo. (Fourier 1826, Motzkin1936)

= Test the emptiness of the conflict polytope
= Algorithm complexity: O(m2 )

* m: number of inequalities (m=4 in the example)

* t: number of of variables (t=3 in the example)
* independent of iteration domain size n

bank(x0, x1)= (x0+x1)%3
j N

O O e O

[
)
)
[

-

o O

1 2 n
Conflict polytope

35

Latest Research - Automating Customized Computing

Program Analysis

Loop Structure

Optimization Loop

Restructuring

Code Generation

Data Layout Array Partitioning
Optimization Data Reuse
. J
/ Module Selection/ \
replication
Inter-Module —
L Communication
Optimization

Optimization
Module-level

\_ Scheduling )

4 )
5
°
=4
(R
< <] LS
@
o
(]
+
=
- J

Polyhedral-Based Data Reuse
Optimization for Configurable Computing
FPGA'13 Best Paper Award

Improving Polyhedral Code Generation
for High-Level Synthesis CODES-ISSS’14
Best Paper Award

Theory and Algorithm for Generalized
Memory Partitioning in High-Level
Synthesis, FPGA'14

An optimal microarchitecture for stencil
computation acceleration based on non-
uniform partitioning of data reuse buffers
(DAC’14)

Combining Computation with
Communication Optimization in System
Synthesis for Streaming Applications,
FPGA'14

36

12111115

18



Motivation
Tile size: 32x32 tile 3 > tile3
Image: 64x64, 4 tiles tile 2 tile 2
tile1 — tile 1
tile 0 ! > tile0
gradient rician

m Which implementation to use for each module?

= Memory partitioned v.s. non-memory-partitioned

non-partitioned gradient 128 21 2511 2125
partitioned gradient 176 56 7147 7262
partitioned rician 128 22 4692 3991
non-partitioned rician 176 88 14475 15537 .
Motivation
Tile size: 32x32 tile 3 > fle3
Image: 64x64, 4 tiles tile 2 tile 2
tile 1 ! tile 1
tile 0 ! > tile0
gradient rician

= How many number of replicas?

m Scheduling and Communication cost (number of tiles in the communication
channel)?

tiled ———> file3 tile 3 /\] tile 3
tile 2 <<> tile 2 v tile 2 «— ™ tile 2
tle1 —> tile1 tile 1 tile 1
tle0 S tile0 tile 0 /\f tile 0
gradient rician gradient rician
scheduling 0 1 tile scheduling 0 >2 tiles

38

12111115

19



A Rich Design Space: System-Level Synthesis
with HLS for Streaming Applications

(Number of replicas?

— Explore data paralleli;m

Module
Replication

choice to use?

Module _0;/ + J + .
System = ?
Module

Selection

Which implementation W

Communication
Optimization

Scheduling

[_impLA [ impl_B |

L L L L
50 100 150 200

cycles
—Producer/Consumer data rate

matching problem

What is the minimum buffer size?|
modules?

LHow to schedule all the

39

Formulation (1/2)

m Derive a scheduling graph
= Associate each node with a time variable, denoting the starting
time of the node

= Scheduling graph: delineates all the scheduling constraints

* Module latency, Module replication, System throughput requirement, Buffer
constraints

Module latency constraints
et,: execution time of task a
et,: execution time of task b

Buffer Constraints
If buffer size betweenaand b is 2,
then add edges: b° 2 a2 b! > a3

40

12111115

20



Formulation (2/2)

m Associate each node with a scheduling variable
= t(b?) - t(a’) >= et,
= t(a?) - t(b?) >=et,

= Scheduling variables are integer variables

m Schedulability checking problem is a System of Difference
Constraints (SDC) problem

= |t can be solved optimally in polynomial time by linear
programming relaxation

= And the solution is guaranteed to be integers

41

12
-==Fa 5
6 6
Scheduling Graph Find critical paths Module Improvement
e Find the length of longest *Find all the paths whose * Associate each edge a new
path (maxL) lengths are maxL, weight — the area penalty to
«In this example, maxL =8 eor more aggressively, remove this edge from the
(1-e)*maxL critical paths
eFind a minimum cut on the

graph

42

12111115

21



Streaming Synthesis (ST-Syn)

m Formulation - Schedulability checking
= System of Difference Constraint Problem

m Exploration - Identify critical path, module/buffer improvement
= Find e-critical paths in the scheduling graph

= Minimum cut problem

m Al relaxation

Start from the impl with the smallest
logic, minimum buffer size

Identify e-Critical Paths
&
Module/Buffer Size Improvement

Fail T

Schedulability
Checking

Success |,

43

Experiments on Example Denoise

= Our methodology: ST-Syn
= computation & communication co-optimization

m Separate:
= separate computation opt. + communication opt.
m > Communication and computation should be considered in a unified
framework

18 Average area
16 W
" 1 reduction: 47%

o 12
10
8 .
6 M Logic
4 l mBRAM
2
0

ST-Syn ‘ Separate

Utilizati

ST-Syn ‘Separate ST-Syn ‘Separate

400

200
Performance (fps)

100

44

12111115

22



More is Needed for
Data Center Level Deployment

Scalable Big-Data Programming

m Simplified programming .1 points = sc.textfile().cache()

for (i <- 1 to ITERATIONS) {
mOdels val gradient = points.map(p =>
= MapReduce, Dataflow (1 /7 (1 + exp(-p.y*(w dot p.x)))

. - 1) *p.y * p.x
m User-transparent Runtime ~ )-reduce(_ + )

w -= gradient

= Distributed computing }
= Scheduling and resource
management @l
= Fault-tolerance Q @l / Spark Worker
Spark Driver ~ Spark Master\~ @l

Spark Worker

46

12111115

23



int main(int argc, char** argv)

MPI_Barrier(MPI_COMM_WORLD) ;

Tt nprocs = 03

int rank = 03

int namelen;

char processor_name [MPI_MAX_PROCESSOR_NAVE] ;

err = clEnqueueliniteBuffer (commands ,
input_weights, CL_TRUE, 0, sizeof(int) * weight_size,
global_weights, 0, NULL, NULL);

MPI_Init(8argc, &argv);
MPI_Comm_size(MPT_COMM_WORLD, &nprocs);
MPI_Comm_rank (MPI_COMM_WORLD, &rank);
MPI_Get_processor_name(processor_nane, &namelen)

if(iter==0) {

err = clEnqueueliriteBuffer(commands,
input_data, CL_TRUE, 0, sizeof(int) * n*(D+L),
global _data, 0, NULL, NULL);

}

int L = LABEL_SIZE; //
int H = HIDDEN_SIZE;
int D = FEATURE_SIZE;
int n = 60000;
int maxIter = 10;

err = 0;
err = clSetKernelarg(kernel, 0, sizeof(cl_mem),

Lots of setup/initialization codes

if (rank == 0) {
// read from file
char *fname, *fname2;
if (arge > 2) {
fname = argv[1];
fname2 = argv[2];
}
else
MPI_Abort(MPI_COMH_WORLD, -1);

Too much hardware-specific
knowledge

load_data(fname, fname2);

accelerator
float* local_dataPoints =

(float*)malloc((L+D)*1local N*sizeof (float)); Shig .

- Manual data partition, task scheduling

MPI_Scatter (dataPoints, local N*(L+D), MPI_FLOAT,

local_dataPoints, local N*(L+D), MPI_FLOAT, 0,

MPI_COMM_WORLD) ;

if( rank == 0 ) clear_data( );

Only support single application

Lack of portability

for (iter=0; iter<10; iter++) {

- Data-transfer between host and ]

More on Cluster Accelerator Resource Management

+ How to make sure acc resources are efficiently utilized?
= Each framework get the accelerator resources it deserves
= Tasks in each framework are assigned to their preferred node
= Fine-grained sharing of each accelerator

nedaA NneaA nedaA

{ Mesos/Yarn er A anage

Distributed File System (HDFS)

48

12111115

24



Falcon Computing Solutions, Inc
http://falcon-computing.com

[
[

User Applications in
Hadioop/Spark

+
Java/Scal

[
[

User Applications in
MapReduce/Hadoop
+

ACC Engines

Overall Computing Solutions

FCS FCS

- — > i
Compiler s..._a s Runtime

Customize &

* Provides compilation, runtime Virtuali
irtualize

support, and acceleration libraries
for FPGA based customized ACC: accelerator
computing in datacenters

* Another UCLA spin-off

©Copyright 2015 Falcon Computing Solutions
49

Challenges and Opportunities for
Logic Synthesis

-- Ultra Fast Synthesis

50

12111115

25



Example Neptune Inc. (2011-2013) Q

Fast FPGA Place/Route Solution Provider

Neptune

Vision: Enable Ultra Fast FPGA Compilation

Synthesis * Delivered Placer 20x speedup vs. Xilinx tool
* Tightly integrated with Xilinx ISE and Vivado
environment
SRR ¢ Supported advanced Virtex-6 and Virtex-7
Neptune Router Architecture
DRC Check * Triggered tremendous interest in emulation and
S BlEmeEm reconfigurable computing
generation * Acquired by Xilinx in 2013

10 Placement

Neptune Placer

[ £ XILINX
f\/H«\ EX iS A &

e

Can We Do the Same or Better for Logic
Synthesis?

Goal: Synthesize 1M Cells Per Minute?
»  Utilizing cloud computing, GPU/FPGA acceleration, etc?

52

12111115

26



Concluding Remarks

+ New era of computing
= Accelerator-centric computing
= Need efficient support for customization and specialization
+ Customization at all levels
= Chip-level
= Server node level
= Data center level
+ Data center level customization holds great promise
= That's where workload aggregates

53

Concluding Remarks (Cont’d)

+ Software support is critical
= Programming models
Hadoop/MapReduce or SPARK (+ C/C++), OpenMP, OpenCL
= Fast and simple compilation
= Runtime management

+ Need critical mass for FPGA acceleration libraries

.....

54

12111115

27



Acknowledgements

+  Center for Domain-Specific Computing (CDSC) under the supports NSF Expeditions in Computing
Program, Fujitsu, Intel, and Mentor Graphics under the NSF InTrans Program

+ C-FAR Center under the STARnet Program
+ CDSC faculty:

Cong (Director)
(UCLA)

Aberle Baraniuk Bui
(UCLA) (Rice) (UCLA)

Z 7\ S
Palsberg Potkonjak Reinman Saayappan Vese
(UCLA) (UCLA) (UCLA) (Ohio-State) (Associate Dir) (UCLA)
(Rice)
55
More Acknowledgements
-- Postdocs, Graduate Students, and Collaborators
fow |
\Prof. Derﬁing Chen .-Yutng Chen Hui Huang Muhuan Huang
(UIUC/ADSC) (UCLA) (UCLA) (UCLA/Falcon Comp)

Dr. Peng Li D;' Fl’eichen Pan prof. Louis-Noél Pouchet  Yuxin Wang Di Wu
(UCLA) (Falcon Comp) (ucLa) (PKU)
9; : l
Gt
Bingjun Xiao Hao Yu Dr. Peng Zhang Yi Zou . Wei Zuo '
(UCLA) (UCLA) (Falcon Comp.) (UCLA) (uiuc) 56

12111115

28



